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Abstract. Intense short duration rainfall events are expected to increase in severity and frequency due to climate change. 

Densely populated urban areas are vulnerable to these events, resulting in high losses. Implementing nature-based (e.g. green 10 
streets, rain gardens and green roofs) and other municipal adaptation measures (e.g. water storage facilities) can be a way to 

mitigate these damages. Little is known about the effectiveness of these measures combined in a municipality. This study 

assesses municipal climate adaptation measures being taken by the municipality of Amsterdam. Unique claims data of 

almost all Dutch insurers is used to understand the impact of these climate adaptation interventions. We study one 

neighborhood in Amsterdam which has been renovated using climate adaptation measures, including nature-based solutions. 15 
We implement a quasi-experimental difference-in-Differences (DiD) analysis that compares insured rainfall damages in the 

area to a similar neighboring area that was not renovated with climate adaptation measures. We find a negative significant 

relation between climate adaptation measures and insured damage when comparing the treated group to the control group, 

i.e. damage is reduced by climate adaptation measures by €3700 euro per rain day. Furthermore, the control variables 

significantly associated with insured damage are precipitation per day (positively), household size (positively), address 20 
density (negatively) and value of property (positively). We suggest that nature-based and other adaptation measures can be 

installed by local governments and stimulated by insurers and banks to increase climate resilience in urban areas.  
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1. Introduction 
 

Densely built cities are vulnerable to intense short duration rainfall events, i.e. cloudbursts (Rosenzweig et al., 2019), which 

can result in pluvial flooding and high damage to buildings and infrastructure. For example, on the 2nd of July in Copenhagen 35 
a single cloudburst of extreme precipitation caused over €800 mln of damage (The City of Copenhagen, 2012). The rainfall 

event in Southern Germany in June 2024 reached €2-3bn of insured losses (MOODY’s, 2024). Due to climate change, 

cloudbursts are likely to increase in frequency and severity (IPCC, 2022).   

A wide range of resilience and additional flood adaptation measures are needed to cope with cloudbursts (Rosenzweig et al., 

2018; Busker et al., 2022). Flood resilience in urban areas is often created by Flood Damage Mitigation (FDM) measures (e.g. 40 
water storage, drainage systems, etc.) taken by the (local) government. Local governments also play a key role in enhancing 

resilience to flood damage caused by cloudbursts within a city, for example by investing in structural protection measures, 

such as dikes (Filatova, 2014). The traditional approach is engineering through building drainage systems, levees and dams. 

According to Sörensen et al. (2016), additional strategies are needed to enhance flood resilience such as adopting “blue-green 

infrastructure”, like green roofs, rain gardens and porous pavements. These blue-green infrastructure can be used to retain 45 
(storm)water and therefore reduce flood risks (Sörensen et al., 2019). 

There is also a role for households and businesses in flood damage risk reduction. For instance, they can implement emergency 

FDM (e.g. placing sandbags which act as a barrier to flood water and elevating personal possessions) and take structural FDM 

measures (e.g. making walls water-resistant and strengthening their buildings’ foundation) (Endendijk et al., 2023). Moreover, 

insurance may be purchased to cover damages in cases where these measures fail. However, it has been shown that individuals, 50 
communities and businesses often underinvest in protection against low-probability, high-consequence flood events (Meyer 

& Kunreuther, 2017). Therefore, governments can undertake interventions to stimulate flood preparedness by households and 

businesses through awareness campaigns (Osberghaus & Hinrichs, 2020). Such awareness campaigns may focus on educating 

households about flood risk and potential coping strategies.  

The goal of this study is to understand the impact of nature-based and other adaptation measures measures on insured damages 55 
caused by cloudbursts. The innovation of our study is threefold. Firstly, we examine the impact of municipal climate adaptation 

measures on insured damages empirically. A wide body of literature has assessed flood damage using mainly flood damage 

modelling methods (Merz et al., 2013; Spekkers et al., 2014; Van Ootegem et al., 2015). Traditional flood damage models 

focus on simulating flood depths of riverine flooding and estimating damage based on exposure information, such as building 

classes and their vulnerability (Merz et al., 2010; Sörensen & Mobini, 2017). However, multiple studies have shown that flood 60 
depth and building class information cannot fully explain flood damage, since it requires an extensive dataset which is often 

not available (Wagenaar et al., 2017; Merz et al., 2010). Moreover, few studies have studied pluvial flood risk modelling (Van 

Ootegem et al., 2015; Porter et al., 2023), which is the hazard focus of our study. Even fewer studies have investigated the 

effect of FDM measures on reducing damage caused by pluvial flooding (Löwe et al., 2017)1. Modelling studies focus on 

situations that are modelled, and therefore not observed in real life. Empirical studies, that include real damage observations, 65 
are needed to better understand the effectiveness of FDM measures. That is, empirical studies are more suitable for drawing 

conclusions from actual conditions, compared to conclusions derived from modelling studies that are typically based on 

assumed conditions.  

The second novelty of this paper is that we use actual insurance damage data to identify causal effects of FDM measures. A 

small but expanding body of literature has focused on assessing the effectiveness of FDM measures on a household level using 70 

 
1 One exception is Löwe et al. (2017), which examined the effect of 9 scenarios of urban development and 32 combinations 

of FDM measures on flood damages. They find that the effectiveness of the measures depends on climate and urban 

development. That is, these measures are interlinked, and the effectiveness can change through variations in climate, 

suggesting that a strategy with different measures through time is preferable to one-off investments. 
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surveys as empirical methods (Endendijk et al., 2023; Kreibich et al., 2015; Poussin et al., 2015; Thieken et al., 2005). For 

example, Endendijk et al. (2023) found that household FDM measures reduced damage due to flooding by about 30% for 

buildings and 40% for home contents using survey data. Other studies show that FDM measures on a building level have 

substantial effects in limiting flood damage (Kreibich et al., 2015; Poussin et al., 2015; Thieken et al., 2005). In this research, 

we do not only focus on adaptation measures of individuals (e.g. green roofs), but also on spatial, neighbourhood level 75 
adaptation measures of the municipality. With survey data one can typically only identify correlational effects. In this study, 

we aim to identify causal effects with a quasi-experiment using real damage data from insurers. The Difference-in-Differences 

(DiD) method allows us to identify the causal effect of FDM measures (Angrist & Pischke, 2008). Also, in surveys it is possible 

that damages are misreported, whereas in this study we examine observed damages registered by insurance companies. The 

use of a DiD-method is an innovative addition to the existing literature on climate adaptation (Osberghaus & Hinrichs, 2020). 80 
In this study, we illustrate how a DiD method can work in the climate adaptation field.  

The third innovation of this study is that we assess the effectiveness of a broad range of policy interventions, including nature-

based solutions. In the literature, most studies examine the effect of a single FDM measure or policy intervention in isolation 

(Osberghaus & Hinrichs, 2020; Sörensen & Emilsson, 2019). More comprehensive approaches may be needed for substantial 

flood risk reduction (Busker et al., 2022; Osberghaus & Hinrichs, 2020).  Osberghaus & Hinrichs (2020) is, to the best of our 85 
knowledge, the only study that adopts a quasi-experimental design to assess the effectiveness of FDM. They use a DiD design 

to measure the impact of a large-scale flood risk awareness campaign from 2009 to 2017 on flood damage (as well as 

households’ adaptation behaviour and insurance penetration) in Germany. They do not find a significant effect of the awareness 

campaign on flood damages. Another study on a single FDM measure is done by Sörensen & Emilsson (2019), who assessed 

the effectiveness of a stormwater system retrofitted through climate adaptation using insurance claims data. They find that 90 
long term trends show less flood damage in the area with these adaptation measures compared to similar neighborhoods. There 

are studies that focus on the impact of single measures like retrofitting an old stormwater system (Sörensen & Emilsson, 2019), 

blue-green roofs (Busker et al., 2022) or awareness campaigns (Osberghaus & Hinrichs, 2020). This paper studies a broader 

range of interventions such as awareness campaigns by adding climate adaptation measures to the study as well. In reality, a 

wide array of measures is needed to reduce damage resulting from cloudbursts (Busker et al., 2022). We lack understanding 95 
of the impact of a broad range of FDM measures on insured damages.  

The remainder of this paper is structured as follows. Section 2 gives an overview of the methodology. Section 3 gives the 

results that are discussed in Section 4. The conclusion follows in section 5. 

2. Methodology  

 100 
2.1 Case study description 

In this study we use insurance claims data to understand the impact of municipal adaptation interventions on pluvial flood 

damages in Amsterdam. We focus on parts of the city where such interventions have been implemented over time. We use 

data on the timing of specific interventions provided by the program Amsterdam Weerproof (Amsterdam Weatherproof), which 

aims to make the city more climate resilient. In this program, various structural measures have been implemented, like 105 
retrofitting municipality owned buildings into greener properties, creating more green areas, improving water storage locations, 

and sewer renewal. Moreover, another focus of the organization is to provide extreme weather information to raise awareness 

of flood risk of citizens through online and in-person information provision (Amsterdam Weerproof, 2024).  

Amsterdam Weerproof executed projects in various neighbourhoods. We compare two adjacent areas of the neighbourhood 

Rivierenbuurt with different postal codes (PC). In PC 1078,  Scheldebuurt (treatment area), municipal adaptation measures 110 
were executed from 2018 until 2022. We compare this neighborhood to PC 1079, Rijnbuurt (control area), where no measures 

were taken. Detailed descriptions of the Rivierenbuurt neighbourhood are found in appendix A. Table 1 describes the climate 

adaptation measures that were taken in the Scheldebuurt.  
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Table 1: Adopted nature-based and other adaptation measures in the treatment area (Amsterdam Weerproof, 2025) 

Type of 

measure 

Explanation of measure 

Municipal spatial nature-based and other adaptation measures  

Renewal of the 

sewer system 

Renewal of the sewer system in the Scheldebuurt  

Extra green 

areas 

Creation of green areas next to roads 

Water storage 

squares  

Installation of water storage capacity at a square (Europaplein) and under tram lanes  

Allocated spaces 

for water to flow 

into 

Installation of water storage areas in streets and the creation of larger green spaces around 

trees for water to flow into.  

 

Household and business level nature-based measures  

Rain proofing 

advice 

Free garden advice from Amsterdam Rainproof coaches on how to make your property more 

rainproof (e.g. replacing tiles for greenery in gardens and green roofing). This was 

incentivized by a municipal subsidy, for instance for replacing tiles of 15 euro per m2.  

Additional green 

spaces 

The addition of small gardens in front of privately owned property, incentivized by the 

municipality. Inhabitants of Amsterdam can ask the municipality for a garden in front of 

their house. Then, the municipality will remove the tiles and build a small garden in front 

of the house.  

 115 

2.2 Data 

2.2.1 Pluvial flood insurance claims data and nature-based and other adaptation measures 

For this study we use claims data of rain damage of households from the Dutch Association of Insurers. More than 95% of the 

Dutch insurers market is member of the Dutch Association of Insurers (Dutch Association of Insurers, 2024). Furthermore, 

more than 95% of households in the Netherlands are insured against rain damage (Dutch Association of Insurers, 2016). 120 
Therefore, almost all pluvial flood damages of households in the studied neighbourhoods are reflected in the insurance claims. 

We use aggregated data on postcode 4-level (PC 4) for the municipality of Amsterdam (2007-2024). In the Netherlands, 

postcode 6-level roughly translates to a location on street level. PC4 refers to a neighbourhood or a part of a district within a 

municipality. The damage data ranges from January 1st 2007 until March 15th 2024. The rain damage claims consist of time 

(day), amount (damage in euros) and location (at postcode 4-level).  125 

The treatment variable is the observed time from when nature-based and other adaptation measures were implemented. From 

November 1st 2018 onwards the municipality of Amsterdam implemented nature based and other climate adaptation measures 

to reduce damage in the treatment area with PC 1078 (Amsterdam Weerproof, 2025).  

Table 2: Dependent variable and treatment variables 

Variable Variable description Data source Mean (standard 

deviation if non-binary 

in parentheses) 

Dependent variables  From 2007 From 2016  
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Insured rain 

damage 

Amount of insured damage per day in the 

Rivierenbuurt caused by rain claimed at an insurer 

operating in the Netherlands in euros. 

Dutch 

Association of 

Insurers 

€202.120 

(1928.918) 

€150.929 

(1340.413) 

Treatment variables   

Treatment: 

Municipal 

adaptation 

measures  

Binary variable. 1 = When the observation is part 

of the treatment area where climate adaptive 

interventions have been taken. 0 = when the 

observation is in the control area, where no 

adaptation intervention took place the study 

period.  

Amsterdam 

Weerproof 

0.500 0.500 

Post  Binary variable. 1 = Observation after November 

1st 2018, when municipal adaptation measures in 

the treatment area have been taken. 0 = 

observations before November 1st  2018.  

Amsterdam 

Weerproof 

0.359 0.753 

 130 

2.2.2 Rain data and socio-demographic characteristics 

Control variables are added to check for neighborhood specific effects when establishing the relationship between the 

adaptation measures and the amount of damage. Two categories of variables are controlled for. Precipitation data is added on 

PC4 level over the period damage data is available from January 1st 2007 until the March 15th 2024. The nearest weather station 

of the Royal Netherlands Meteorological Institute (KNMI) is located at Schiphol airport, which is approximately 10 km from 135 
the Rivierenbuurt. Two types of data are derived from the weather station: data on amount of precipitation per day and data on 

maximum precipitation per hour. Both are included, because moderate rain over a long period within a day can cause damage 

as well as torrential rain in a short moment. The observations of the damage data are the day on which the claim is filed. The 

claim can be filed on the same day as the event that caused the damage. However, people can also file claims one or two days 

later. Therefore, for both rain control variables we use one- and two-day lags.  140 

Additionally, data on socio-demographic characteristics of the Rivierenbuurt (e.g. average house price and average size of 

households) is used to control for neighborhood specific effects. This data is derived from public data of Statistics Netherlands 

(CBS), which is only available on a yearly basis from January 1st 2016 until December 31st 2023. Therefore, we interpolate 

between the years to create daily neighborhood characteristic data and extrapolate in the period January 1st 2024 until March 

15th 2024 by assuming linear trends.  145 

Table 3: Control variables 

Variable Variable description Data 

source 

Mean and standard deviation 

if non-binary 

Rain Data  From 2007 From 2016 

Sum of rain 

per day 

Sum of rain in 0.1 mm at the weather 

station around Schiphol airport (the nearest 

station is approximately 10 km from 

Rivierenbuurt) 

KNMI 23.13 (47.22) 23.61 (47.27) 

Max sum of 

rain in an hour 

Max sum of rain in an hour at Schiphol 

airport in 0.1 mm 

KNMI 8.90 (18.41) 9.08 (18.38) 

Area characteristics (per day from 2016)  
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Address 

density  

Number of addresses per km²  CBS 7282.08 

(1282.64) 

Building characteristics(per day from 2016) 

Value property  Average price per real estate asset based on 

the Valuation of Immovable Property Act 

(WOZ) in Amsterdam in thousand Euros.  

CBS 578.39 

(108.38) 

Percentage of 

real estate built 

before 1945 

Percentage of real estate in Rivierenbuurt 

constructed before the year 1945 

CBS 0.878 (0.074) 

Average 

number of 

people per 

household per 

address 

The average number of people per 

household per address.  

CBS 1.673 (0.800) 

 

2.3 Difference-in-difference method 

In this study, we use a DiD two-way fixed effects model to estimate the impact of municipal adaptation measures on rainfall 

damage in Amsterdam. We compare two adjacent areas within the Rivierenbuurt neighborhood: one where flood damage 150 
mitigation (FDM) measures have been implemented (Scheldebuurt) and another where no interventions have been 

implemented (Rijnbuurt). The DiD approach allows us to compare changes in outcomes over time between these areas, 

while controlling for unobserved factors and broader trends (Card & Krueger, 1993; Wooldridge, 2014). By leveraging 

insurance claims data, we can isolate the causal impact of these measures under the assumption that both areas would have 

followed similar trends in the absence of interventions. We test this assumption in the next section. 155 

We expand upon a traditional DiD by employing a two-way fixed effects (TWFE) model (Callaway & Sant’Anna, 2021). This 

approach controls for time-invariant unobserved differences between neighborhoods, such as historical infrastructure and 

socioeconomic factors, as well as time-specific shocks, like extreme weather events. By accounting for both neighborhood and 

time fixed effects, the TWFE model ensures that our estimated treatment effect reflects the impact of adaptation measures 

rather than underlying trends or external influences. This strengthens the causal interpretation of the DiD analysis. We estimate 160 
the following TWFE model: 

𝑌𝑖𝑡  =  𝛽0  +  𝛽1𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑝𝑜𝑠𝑡𝑡   + 𝛽2𝑋𝑖𝑡
′   +  𝛿𝑖   +  𝜃𝑡   + 𝜀𝑖𝑡   

The outcome variable Yit represents daily insured damage claims in euros. Moreover, we expect that no rain damage occurs 

with slight rain (<2 mm/h). Therefore, we look at cases of moderate, or higher rain (>2 mm/h) in classification (Met Office 

UK, 2012). Excess rainfall can accumulate on the surface and may cause damage to buildings. Therefore, we only include 165 
damage observations linked to days when this threshold is exceeded, along with a two-day lag period to account for potential 

delays in damage claims reporting. The average treatment effect is given by β1, which captures the average impact of the policy 

intervention in the treated area in the TWFE specification (Callaway & Sant’Anna, 2021). We control for time-invariant 

neighborhood differences using unit (postcode 4-level) fixed effects (δi). Time-specific neighborhood-level shocks are 

controlled for through fixed effects for each month (θt). The coefficient vector of other control variables is represented by β2, 170 
and the error term is given by εit. 

2.4 Common trend assumption 
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The central assumption for a DiD analysis is the common trend assumption, which states that, in the absence of the treatment, 

the treatment and control groups would have followed a similar trend (in our case of insured damages) over time (Angrist & 

Pischke, 2008). This assumption allows for isolating the treatment effect from any other factors that may influence damage 175 
from rainfall. If both neighbourhoods were on different damage trajectories before the policy intervention, differences in their 

post-intervention outcomes could be attributed to these pre-treatment differences. Additionally, it is assumed that no significant 

changes in group composition occur over time. Data from Statistics Netherlands indicates that there were no shocks to the 

demographic composition of the neighbourhoods during the study period, supporting this assumption. Moreover, key 

demographics are controlled for in our regression model. 180 

The time trend of median yearly damage claims in both neighbourhoods is plotted in Figure 1 and we perform placebo tests in 

Appendix B. We use the median of observations when rain damage occurred to display the common trend assumption in the 

figure, because the average is sensitive to outliers, and we compare only two small neighbourhoods. The intervention period 

is displayed in the figure as well. The time trends of median damages in both the control group and treatment group are similar 

before the intervention takes place and start to differ after the start of the intervention. Therefore, the intervention seems to 185 
impact the trend of the median rain damage. After the intervention, the median rain damage rises in the control group, but 

decreases in the treatment group. Initially, the rain damage of the treatment group is higher than the damage of the control 

group. Over time, more measures have been implemented. After most of the intervention has finished, the damage of the 

treatment group decreases and becomes less compared to the control group. Next to visual evidence, a placebo test can be 

performed to check for the common trend assumption (Eggers et al., 2021). The placebo test checks the common trend 190 
assumption by creating "fake" treatment groups before and after the intervention. We select a different treatment timeframe 

and see whether the effects are significant as well. If no effect is found in any of the placebo groups, it supports that the found 

treatment effect can be attributed to the treatment rather than pre-existing trends. Angrist and Pischke (2008) used lag and lead 

values of treatment status to show that no significant effects occurred in the placebo periods. In Appendix B, we apply placebo 

tests by using one- and two-month leads and lags for the treatment variable. These placebo treatment variables resulted in non-195 
significant outcomes, reinforcing the validity of the common trend assumption for causal inference. 

 

Figure 1: Median insured rain damage per year in treatment area and control area. 
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Note: The intervention began in November 2018 and was finished in January 2022. Also, in the figure above there is no datapoint for 2024, because there are 

no observations of damages and rainfall exceeding 2 mm per hour in 2024 (until 15th of March).  200 

3. Results  

The results are shown in Table 4 for two models. The first model showcases the results of the dataset starting from 2007 until 

2024 without control variables for area characteristics, which are unavailable for this time period. In this model we see that 

the DiD-indicator shows a significant (p < 0.1) reduction of insured damage in the treatment compared to the control group. 

This means that in the area where nature-based and other adaptation measures were adopted, insured damage in the treatment 205 
group is on average €647 per day lower for rain events exceeding 2 mm per hour as compared to the control group, after 

controlling for time and unit fixed effects. The second model presents results using damage data starting from 2016, when area 

characteristics are available as control variables. The coefficient on the interaction term shows a significant (p < 0.01) reduction 

of damage in the treatment group, compared to the control group. The rain damage is, on average, lower by €3696 euro per 

rain day compared to the control group. Furthermore, the variable for precipitation per day is positive and significant (p < 0.01) 210 
in model 1, indicating that an increase of 0.1 mm precipitation per day results in an increase of €6.27 of rain damage on average 

per rain day based on model 1.  

Regarding the area characteristics control variables, we see that the average number of people per household per address is 

positively and significantly (p < 0.01) associated with insured damage. Furthermore, a higher address density is significantly 

(p < 0.01) and negatively (-€72) associated with insured damage. Lastly the value of property is positively (€43) and 215 
significantly (p < 0.1) associated with insured damage. The other control variables are insignificant determinants of insured 

damages. According to the adjusted R-squared, Model 1 explains 16.2% of the variation in insured damage and model 2 

explains 28.0% of the variation.  

Table 4: Two-way fixed effects DiD regression on insured damage per day in case of maximum rain per hour exceeds 

2mm per hour 220 

Variables (1) (2) 

Model 1 (2007-2024) Model 2 (2016-2024) 

Post × treatment (DiD) -646.963* -3696.401*** 

 (392.473) (1064.886) 

Sum of rain per day (in 0.1 mm) 6.267*** 1.402 

 (1.949) (1.815) 

Sum of rain per day lag 1 (in 0.1 mm) -2.158 -0.297 

 (3.004) (2.870) 

Sum of rain per day lag 2 (in 0.1 mm) 0.437 1.773 

 (3.429) (3.336) 

Maximum rain in an hour (in 0.1 mm) -2.679 -4.215 

 (5.075) (4.808) 

Maximum rain in an hour lag 1 (in 0.1 

mm) 

10.618 2.865 

 (7.732) (7.661) 

Maximum rain in an hour lag 2 (in 0.1 

mm) 

-2.997 -4.835 

 (9.572) (9.056) 

Average number of people per 

household per address 

 24775.310*** 

  (8732.571) 

Percentage of real estate built before 

1945 

 63,224 

  (46,619) 
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Address density (per km²)  -72.430*** 

  (22.560) 

Value of property (in euros)  43.642* 

  (23.950) 

Adjusted R² 0.162 0.280 

N 1766 886 

Time fixed effects (month) X X 

Unit fixed effects (PC4) X X 
Note: Robust standard errors in parentheses. ***p < 0.01;**p < 0.05;*p < 0.1.  

4. Discussion and recommendations 

 

4.1 Discussion of findings in relation to the existing literature 

Impact nature-based and other adaptation measures measures on rain damage (post × treatment): In both models we find a 225 
significant reduction of insured damages in the treatment group compared to the control group. We do find a stronger 

significant relation in model 2. This is partially the result of high damage observations in the control group in August 2010. 

The interaction result of model 1 is impacted by higher damage observations in August 2010 in the control group compared to 

the treatment group.2 The results of the impact of nature-based and other adaptation measures on damage are in line with some 

previous studies on physical adaptation measures. Sörensen & Emilsson (2019) present trends showing less damage in areas 230 
with adaptation measures compared to similar neighbourhoods. Also, the findings are in line with studies on the effectiveness 

of FDM measures: Endendijk et al. (2023), Kreibich et al. (2015), Poussin et al. (2015), and Thieken et al. (2005) all confirm 

the damage reductive capacity of flood risk reduction measures.  The addition of this study is the DiD design, which allows us 

to identify the causal effect of FDM measures. To our knowledge, the method is hardly seen in the climate adaptation field. 

We illustrate with this that this method can work. Future studies could adopt this method as well in different areas. Rain control 235 
variables: Model 1 shows a significant result regarding precipitation per day. Contrastingly, the precipitation per day variable 

in model 2 is insignificant. Model 1 has 1766 observations and model 2 has 866 observations. The fact that model 2 has less 

than half the number of observations could be an explanation why no significant coefficient is found for the rain control 

variables in model 2. The literature findings on the relation between rain and damage vary. Previous literature on pluvial floods 

and damage show that flood depth (among other factors) cannot fully explain damage (Wagenaar et al., 2017; Merz et al., 240 
2010). However, Sörensen et al. (2017) also find that rainfall intensity is one of the main determinants of flood damage. We 

further do not find a significant relation between damage and maximum rain per hour.  

Area and building characteristics control variables: Of the other control variables, household size (positively) and address 

density (negatively) are significantly associated with rain damage. The household size effect could be explained by greater 

rain damage exposure of larger households. This is in line with Wagenaar et al. (2017), who find that household size is an 245 
important determinant of structural damage.  Endendijk et al. (2023) find a significant association between household size and 

both contents and property damage. In our study we look at contents and property insurance claims combined. The negative 

association between address density and rain damage could be explained by the urban context. The analyzed neighborhoods 

in Amsterdam are densely populated. Rain damage normally occurs on the ground floor or through roofs at the highest floors 

of apartment buildings. The density of an area in an urban context could increase through the construction of apartment blocks. 250 
With separate residences on several floors, apartments between the ground floor and the top level are less exposed to rain 

damage. In this case, proportionally fewer addresses are exposed to rain damage compared to what would be expected in less 

densely populated areas, where apartment blocks are less common. Lastly, property value is positively and significantly 

associated with rain damage, as expected due to generally increased repair costs in high value properties.   

 
2 In an additional analysis, we omitted the month August 2010, with the large damages in the control group.  This month is an outlier and seemed to impact 

the interaction result and the coefficient. We see minor changes in the results: the interaction coefficient is -704,461, compared to the -646,963 in the model 

with August 2010 included, and the relation is significant on the same level (p < 0.01).  
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4.2 Policy implications 255 
We find that nature-based and other adaptation measures reduce rain damage. Local governments can use nature based and 

other adaptation measures (e.g. through green lanes, water storage facilities, green roofs, and greener gardens) as means to 

decrease rain damage in urban areas and increase livability and biodiversity in these areas (Skrydstrup et al., 2022). These 

nature based measures often come with co-benefits like mental and physical benefits (Tzoulas et al., 2007). The benefits (in 

addition to the damage reducing potential of these measures) make these nature-based solutions attractive for designing climate 260 
resilient cities globally. The measures the city of Amsterdam implemented (e.g. water storage on city squares, green roofs) can 

be implemented in cities worldwide. The findings of this study can incentivize national governments, building corporations, 

and project developers to construct buildings and infrastructure in a climate adaptive way. The quantification of avoided 

damage can also be useful for cost-benefit analyses. Measures like green roofs and rain gardens can be stimulated by 

governments using policy measures like subsidies. Lastly, the results of this study can incentivize insurers to stimulate the 265 
uptake of climate adaptive measures of their customers. Insurers could stimulate these measures by providing flood risk 

information or giving premium discounts when customers take climate adaptive measures and may benefit from lower claims 

(Poussin et al., 2015; Mol et al., 2020).  

4.3 Limitations and research implications 

In this study we used insurance damage data. Most studies using insurance data use data of a single insurer (Cheng et al., 2012) 270 
or only a few insurers (Sörensen et al., 2019). A strength of this study is the use of high resolution insurance data covering 

more than 95% of the Dutch insurance market (Dutch Association of Insurers, 2024). However, the data contains mainly 

household claims, and we here neglect insurance claims of businesses mostly. The fact that only two full years (2022-2024) 

had passed  since the end intervention period could be a limitation. However, we do find significant effects already. Moreover, 

torrential rain can be a local event, whereas we used rain data measured at the nearest weather station of which data may 275 
deviate from the real rainfall at the case study locations. This difference in data granularity between local insured damages and 

rainfall may weaken statistical significance between these two variables and means that the rainfall data may lack precision. 

Lastly, this study shows the impact of all adaptation measures combined. In a future study, it might be of value to understand 

the impact of these measures separately. 

5.  Conclusion 280 
In this study, we show the impact of various nature-based and other adaptation measures on insured rain damage. We add 

novel insights to the literature by using actual insurance damage data to identify causal effects of a broad range of adaptation 

measures. Our results show a robust significant reduction in damage caused by the adoption of climate adaptation measures in 

the city of Amsterdam. Furthermore, household size is positively associated with rain damage, suggesting that larger 

households are more exposed to rain damage. Address density is negatively associated with rain damage, indicating an impact 285 
of apartment blocks where proportionally fewer addresses are exposed to rain damage compared to a single building with one 

address. The effect of nature based and other climate adaptation measures on rain damage suggests that governments, private 

investors, banks and insurers can stimulate and implement these measures to cope with increasing rain damage. Local 

governments can incentivize the uptake of these measures among their citizens through information provision and 

subsidization. Private investors can invest in climate adaptive real estate to finance durable, resilient real estate and 290 
infrastructure that can withstand heavy rain damage. Banks can stimulate climate adaptation by including adaptation measures 

for resilient houses in loans (e.g. climate adaptive mortgage products). Insurers can stimulate climate adaptation measures 

through information provision, premium discounts and climate adaptive retrofitting (building back better) after damage. 

Improving the understanding of the impact of climate adaptation measures is important to increase societal climate resilience. 

Cloudbursts can increase in severity and frequency, potentially causing more floods in urban areas. The implementation of 295 
nature-based and other adaptation measures is important to prevent urban floods and reduce damage in urban areas globally.   
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Appendix A 

 

Table A1: Description Rivierenbuurt 420 

In Rivierenbuurt we compare two parts of the same neighbourhood. One where measures have been executed, Scheldebuurt, 

and one where no measures have been taken yet, Rijnbuurt.  

 Scheldebuurt (treatment area) Rijnbuurt (control area) 

Population (in 

2024) 

15225 people 8.950 people 

Size in 

hectares 

101  110 

Amount of 

businesses 

2990 1625 

Density area 7316 addresses per km2 6152 addresses per km2 

Average house 

price (in 2023) 

EUR 677.000 EUR 512.000 

Year of 

construction  

>80% between 1925-1950 >80% between 1925-1950 

Type of 

building 

98,3% apartments 98,9% apartments 

Amount home 

owners 

29% 20% 

Source: Statistics Netherlands, 2024 
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Appendix B 

 

Table B1: Placebo test 2007 with lags of one month and two months 

 (1) 

Variables  

  

1.treatment - 

  

0bL30.placebo 0 

 (0) 

1oL30.placebo 0 

 (0) 

0b.treatment#0bL30.placebo 0 

 (0) 

0b.treatment#1oL30.placebo 0 

 (0) 

1o.treatment#0bL30.placebo 0 

 (0) 

1.treatment#1L30.placebo 184.4 

 (2,606) 

0bL60.placebo 0 

 (0) 

1oL60.placebo 0 

 (0) 

0b.treatment#0bL60.placebo 0 

 (0) 

0b.treatment#1oL60.placebo 0 

 (0) 

1o.treatment#0bL60.placebo 0 

 (0) 

1.treatment#1L60.placebo 42.64 

 (2,581) 

Sum of rain per day (in 0.1 mm) 6.303*** 

 (1.966) 

Sum of rain per day lag 1 (in 0.1 mm) -2.147 

 (3.022) 

Sum of rain per day lag 2 (in 0.1 mm) 0.462 

 (3.442) 

Maximum rain in an hour (in 0.1 mm) -2.703 

 (5.104) 

Maximum rain in an hour lag 1 (in 0.1 mm) 10.62 

 (7.776) 

Maximum rain in an hour lag 2 (in 0.1 mm) -3.040 

 (9.631) 

Constant -193.7 

 (231.4) 

  

Observations 1,752 
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R-squared 0.253 

Standard errors in parentheses 435 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table B2: Placebo test 2007 with leads of one month and two months 

 (1) 

Variables  

  

1o.treatment - 

  

0bF30.placebo 0 

 (0) 

1oF30.placebo 0 

 (0) 

0b.treatment#0bF30.placebo 0 

 (0) 

0b.Rivierenbuurt#1oF30.placebo 0 

 (0) 

1o.treatment#0bF30.placebo 0 

 (0) 

1.treatment#1F30.placebo 78.78 

 (1,762) 

0bF60.placebo 0 

 (0) 

1oF60.placebo 0 

 (0) 

0b.treatment#0bF60.placebo 0 

 (0) 

0b.treatment#1oF60.placebo 0 

 (0) 

1o.treatment#0bF60.placebo 0 

 (0) 

1.treatment#1F60.placebo 213.4 

 (1,673) 

Sum of rain per day (in 0.1 mm) 6.350*** 

 (1.978) 

Sum of rain per day lag 1 (in 0.1 mm) -2.130 

 (3.033) 

Sum of rain per day lag 2 (in 0.1 mm) 0.416 

 (3.459) 

Maximum rain in an hour (in 0.1 mm) -2.800 

 (5.128) 

Maximum rain in an hour lag 1 (in 0.1 mm) 10.56 

 (7.796) 

Maximum rain in an hour lag 2 (in 0.1 mm) -2.881 

 (9.654) 

Constant -197.2 

 (232.5) 
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Observations 1,746 

R-squared 0.253 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 440 
 

Table B3: Placebo test 2016 with lags of one month and two months 

 (1) 

Variables  

  

1.treatment - 

  

0bL30.placebo 0 

 (0) 

1oL30.placebo 0 

 (0) 

0b.treatment#0bL30.placebo 0 

 (0) 

0b.treatment#1oL30.placebo 0 

 (0) 

1o.treatment#0bL30.placebo 0 

 (0) 

1.treatment#1L30.placebo 29.93 

 (2,451) 

0bL60.placebo 0 

 (0) 

1oL60.placebo 0 

 (0) 

0b.treatment#0bL60.placebo 0 

 (0) 

0b.treatment#1oL60.placebo 0 

 (0) 

1o.treatment#0bL60.placebo 0 

 (0) 

1.treatment#1L60.placebo 992.0 

 (2,277) 

Sum of rain per day (in 0.1 mm) 1.326 

 (1.857) 

Sum of rain per day lag 1 (in 0.1 mm) -0.443 

 (2.936) 

Sum of rain per day lag 2 (in 0.1 mm) 1.793 

 (3.416) 

Maximum rain in an hour (in 0.1 mm) -3.906 

 (4.911) 

Maximum rain in an hour lag 1 (in 0.1 mm) 3.109 

 (7.831) 

Maximum rain in an hour lag 2 (in 0.1 mm) -4.661 

 (9.264) 

Average number of people per household per address 8,845 

 (11,948) 
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Percentage of real estate built before 1945 15,783 

 (82,851) 

Address density (per km²) -20.68 

 (20.95) 

Value of property 4.668 

 (21.83) 

Constant 120,158 

 (185,291) 

  

Observations 868 

R-squared 0.270 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 445 

Table B4: Placebo test 2016 with leads of one month and two months 

 (1) 

Variables schadebedrag 

  

1o.treatment - 

  

0bF30.placebo 0 

 (0) 

1oF30.placebo 0 

 (0) 

0b.treatment#0bF30.placebo 0 

 (0) 

0b.Rivierenbuurt#1oF30.placebo 0 

 (0) 

1o.treatment#0bF30.placebo 0 

 (0) 

1.treatment#1F30.placebo 1,012 

 (2,286) 

0bF60.placebo 0 

 (0) 

1oF60.placebo 0 

 (0) 

0b.treatment#0bF60.placebo 0 

 (0) 

0b.treatment#1oF60.placebo 0 

 (0) 

1o.treatment#0bF60.placebo 0 

 (0) 

1.treatment#1F60.placebo 145.3 

 (2,446) 

Sum of rain per day (in 0.1 mm) 1.296 

 (1.878) 

Sum of rain per day lag 1 (in 0.1 mm) -0.416 

 (2.943) 

Sum of rain per day lag 2 (in 0.1 mm) 1.736 
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 (3.431) 

Maximum rain in an hour (in 0.1 mm) -3.815 

 (4.929) 

Maximum rain in an hour lag 1 (in 0.1 mm) 2.978 

 (7.829) 

Maximum rain in an hour lag 2 (in 0.1 mm) -4.439 

 (9.270) 

Average number of people per household per address 6,135 

 (10,994) 

Percentage of real estate built before 1945 32,785 

 (75,476) 

Address density (per km²) -14.80 

 (19.13) 

Value of property -0.787 

 (21.99) 

Constant 69,471 

 (168,162) 

  

Observations 866 

R-squared 0.270 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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